NOTE ON MMAT 5010: LINEAR ANALYSIS (2017 1ST TERM)

CHI-WAI LEUNG

1. Normed spaces

Throughout this note, we always denote \mathbb{K} by the real field \mathbb{R} or the complex field \mathbb{C} . Let \mathbb{N} be the set of all natural numbers. Also, we write a sequence of numbers as a function $x : \{1, 2, ...\} \to \mathbb{K}$.

Definition 1.1. Let X be a vector space over the field \mathbb{K} . A function $\|\cdot\|: X \to \mathbb{R}$ is called a norm on X if it satisfies the following conditions.

(i) $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 if and only if x = 0.

(ii) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{K}$ and $x \in X$.

(iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

In this case, the pair $(X, \|\cdot\|)$ is called a normed space. Also, the distance between the elements x and y in X is defined by ||x - y||.

The following examples are important classes in the study of functional analysis.

Example 1.2. Consider
$$X = \mathbb{K}^n$$
. Put

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \text{ and } ||x||_\infty := \max_{i=1,\dots,n} |x_i|$$

for $1 \leq p < \infty$ and $x = (x_1, ..., x_n) \in \mathbb{K}^n$.

Then $\|\cdot\|_p$ (called the usual norm as p=2) and $\|\cdot\|_{\infty}$ (called the sup-norm) all are norms on \mathbb{K}^n .

Example 1.3. Put

$$c_0 := \{(x(i)) : x(i) \in \mathbb{K}, \lim |x(i)| = 0\}$$
 (called the null sequece space)

and

$$\ell^{\infty} := \{ (x(i)) : x(i) \in \mathbb{K}, \sup_{i} |x(i)| < \infty \}.$$

Then c_0 is a subspace of ℓ^{∞} . The sup-norm $\|\cdot\|_{\infty}$ on ℓ^{∞} is defined by

$$||x||_{\infty} := \sup |x(i)|$$

for $x \in \ell^{\infty}$. Let

$$c_{00} := \{(x(i)): \text{ there are only finitly many } x(i) \text{ 's are non-zero}\}.$$

Also, c_{00} is endowed with the sup-norm defined above is called the finite sequence space.

Example 1.4. For $1 \le p < \infty$, put

$$\ell^p := \{ (x(i)) : x(i) \in \mathbb{K}, \sum_{i=1}^{\infty} |x(i)|^p < \infty \}.$$

Also, ℓ^p is equipped with the norm

$$||x||_p := (\sum_{i=1}^{\infty} |x(i)|^p)^{\frac{1}{p}}$$

Date: September 11, 2017.

for $x \in \ell^p$. Then $\|\cdot\|_p$ is a norm on ℓ^p (see [1, Section 9.1]).

Example 1.5. Let $C^{b}(\mathbb{R})$ be the space of all bounded continuous \mathbb{R} -valued functions f on \mathbb{R} . Now $C^{b}(\mathbb{R})$ is endowed with the sup-norm, that is,

$$\|f\|_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$$

for every $f \in C^b(\mathbb{R})$. Then $\|\cdot\|_{\infty}$ is a norm on $C^b(\mathbb{R})$.

Also, we consider the following subspaces of $C^{b}(X)$.

Let $C_0(\mathbb{R})$ (resp. $C_c(\mathbb{R})$) be the space of all continuous \mathbb{R} -valued functions f on \mathbb{R} which vanish at infinity (resp. have compact supports), that is, for every $\varepsilon > 0$, there is a K > 0 such that $|f(x)| < \varepsilon$ (resp. $f(x) \equiv 0$) for all |x| > K.

It is clear that we have $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq C^b(\mathbb{R})$.

Now $C_0(\mathbb{R})$ and $C_c(\mathbb{R})$ are endowed with the sup-norm $\|\cdot\|_{\infty}$.

Notation 1.6. From now on, $(X, \|\cdot\|)$ always denotes a normed space over a field \mathbb{K} . For r > 0 and $x \in X$, let

- (i) $B(x,r) := \{y \in X : ||x y|| < r\}$ (called an open ball with the center at x of radius r) and $B^*(x,r) := \{y \in X : 0 < ||x y|| < r\}$
- (ii) $B(x,r) := \{y \in X : ||x y|| \le r\}$ (called a closed ball with the center at x of radius r).

Put $B_X := \{x \in X : ||x|| \le 1\}$ and $S_X := \{x \in X : ||x|| = 1\}$ the closed unit ball and the unit sphere of X respectively.

Definition 1.7. Let A be a subset of X.

- (i) A point $a \in A$ is called an interior point of A if there is r > 0 such that $B(a, r) \subseteq A$. Write int(A) for the set of all interior points of A.
- (ii) A is called an open subset of X if int(A) = A.

Example 1.8. We keep the notation as above.

- (i) Let \mathbb{Z} and \mathbb{Q} denote the set of all integers and rational numbers respectively If \mathbb{Z} and \mathbb{Q} both are viewed as the subsets of \mathbb{R} , then $int(\mathbb{Z})$ and $int(\mathbb{Q})$ both are empty.
- (ii) The open interval (0,1) is an open subset of \mathbb{R} but it is not an open subset of \mathbb{R}^2 . In fact, int(0,1) = (0,1) if (0,1) is considered as a subset of \mathbb{R} but $int(0,1) = \emptyset$ while (0,1) is viewed as a subset of \mathbb{R}^2 .
- *(iii)* Every open ball is an open subset of X (Check!!).

Definition 1.9. We say that a sequence (x_n) in X converges to an element $a \in X$ if $\lim ||x_n - a|| = 0$, that is, for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $||x_n - a|| < \varepsilon$ for all $n \ge N$.

In this case, (x_n) is said to be convergent and a is called a limit of the sequence (x_n) .

Remark 1.10.

(i) If (x_n) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the limits of (x_n) , then we have $||a - b|| \le ||a - x_n|| + ||x_n - b|| \to 0$. So, ||a - b|| = 0 which implies that a = b.

From now on, we write $\lim x_n$ for the limit of (x_n) provided the limit exists.

(ii) The definition of a convergent sequence (x_n) depends on the underling space where the sequence (x_n) sits in. For example, for each $n = 1, 2..., let x_n(i) := 1/i$ as $1 \le i \le n$ and $x_n(i) = 0$ as i > n. Then (x_n) is a convergent sequence in ℓ^{∞} but it is not convergent in c_{00} . **Definition 1.11.** Let A be a subset of X.

- (i) A point $z \in X$ is called a limit point of A if for any $\varepsilon > 0$, there is an element $a \in A$ such that $0 < ||z a|| < \varepsilon$, that is, $B^*(z, \varepsilon) \cap A \neq \emptyset$ for all $\varepsilon > 0$.
- Furthermore, if A contains the set of all its limit points, then A is said to be closed in X. (ii) The closure of A, write \overline{A} , is defined by

 $\overline{A} := A \cup \{ z \in X : z \text{ is a limit point of } A \}.$

Remark 1.12. With the notation as above, it is clear that a point $z \in \overline{A}$ if and only if $B(z, r) \cap A \neq \emptyset$ for all r > 0. This is also equivalent to saying that there is a sequence (x_n) in A such that $x_n \to a$. In fact, this can be shown by considering $r = \frac{1}{n}$ for n = 1, 2...

Proposition 1.13. With the notation as before, we have the following assertions.

- (i) A is closed in X if and only if its complement $X \setminus A$ is open in X.
- (ii) The closure \overline{A} is the smallest closed subset of X containing A. The "smallest" in here means that if F is a closed subset containing A, then $\overline{A} \subseteq F$. Consequently, A is closed if and only if $\overline{A} = A$.

Proof. If A is empty, then the assertions (i) and (ii) both are obvious. Now assume that $A \neq \emptyset$. For part (i), let $C = X \setminus A$ and $b \in C$. Suppose that A is closed in X. If there exists an element $b \in C \setminus int(C)$, then $B(b, r) \nsubseteq C$ for all r > 0. This implies that $B(b, r) \cap A \neq \emptyset$ for all r > 0 and hence, b is a limit point of A since $b \notin A$. It contradicts to the closeness of A. So, A = int(A) and thus, A is open.

For the converse of (i), assume that C is open in X. Assume that A has a limit point z but $z \notin A$. Since $z \notin A$, $z \in C = int(C)$ because C is open. Hence, we can find r > 0 such that $B(z,r) \subseteq C$. This gives $B(z,r) \cap A = \emptyset$. This contradicts to the assumption of z being a limit point of A. So, A must contain all of its limit points and hence, it is closed.

For part (*ii*), we first claim that \overline{A} is closed. Let z be a limit point of \overline{A} . Let r > 0. Then there is $w \in B^*(z,r) \cap \overline{A}$. Choose $0 < r_1 < r$ small enough such that $B(w,r_1) \subseteq B^*(z,r)$. Since w is a limit point of A, we have $\emptyset \neq B^*(w,r_1) \cap A \subseteq B^*(z,r) \cap A$. So, z is a limit point of A. Thus, $z \in \overline{A}$ as required. This implies that \overline{A} is closed.

It is clear that \overline{A} is the smallest closed set containing A.

The last assertion follows from the minimality of the closed sets containing A immediately. The proof is finished.

Example 1.14. Retains all notation as above. We have $\overline{c_{00}} = c_0 \subseteq \ell^{\infty}$. Consequently, c_0 is a closed subspace of ℓ^{∞} but c_{00} is not.

Proof. We first claim that $\overline{c_{00}} \subseteq c_0$. Let $z \in \ell^{\infty}$. It suffices to show that if $z \in \overline{c_{00}}$, then $z \in c_0$, that is, $\lim_{i \to \infty} z(i) = 0$. Let $\varepsilon > 0$. Then there is $x \in B(z, \varepsilon) \cap c_{00}$ and hence, we have $|x(i) - z(i)| < \varepsilon$ for all $i = 1, 2, \dots$. Since $x \in c_{00}$, there is $i_0 \in \mathbb{N}$ such that x(i) = 0 for all $i \ge i_0$. Therefore, we have $|z(i)| = |z(i) - x(i)| < \varepsilon$ for all $i \ge i_0$. So, $z \in c_0$ as desired.

For the reverse inclusion, let $w \in c_0$. It needs to show that $B(w,r) \cap c_{00} \neq \emptyset$ for all r > 0. Let r > 0. Since $w \in c_0$, there is i_0 such that |w(i)| < r for all $i \ge i_0$. If we let x(i) = w(i) for $1 \le i < i_0$ and x(i) = 0 for $i \ge i_0$, then $x \in c_{00}$ and $||x - w||_{\infty} := \sup_{i=1,2...} |x(i) - w(i)| < r$ as required. \Box

References

[1] J. Muscat, Functional Analysis, Springer, (2014).

[2] H. Royden and P. Fitzpatrick, Real analysis, fourth edition, Pearson, (2010).